Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires.

Identifieur interne : 000B45 ( Main/Exploration ); précédent : 000B44; suivant : 000B46

Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires.

Auteurs : RBID : pubmed:22142455

English descriptors

Abstract

Rational synthesis of nanowires via the vapor-liquid-solid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored Au-Cu alloys as catalyst. Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary In-Sn-O phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.

DOI: 10.1021/nl2035089
PubMed: 22142455

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires.</title>
<author>
<name sortKey="Gao, Jing" uniqKey="Gao J">Jing Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lebedev, Oleg I" uniqKey="Lebedev O">Oleg I Lebedev</name>
</author>
<author>
<name sortKey="Turner, Stuart" uniqKey="Turner S">Stuart Turner</name>
</author>
<author>
<name sortKey="Li, Yong Feng" uniqKey="Li Y">Yong Feng Li</name>
</author>
<author>
<name sortKey="Lu, Yun Hao" uniqKey="Lu Y">Yun Hao Lu</name>
</author>
<author>
<name sortKey="Feng, Yuan Ping" uniqKey="Feng Y">Yuan Ping Feng</name>
</author>
<author>
<name sortKey="Boullay, Philippe" uniqKey="Boullay P">Philippe Boullay</name>
</author>
<author>
<name sortKey="Prellier, Wilfrid" uniqKey="Prellier W">Wilfrid Prellier</name>
</author>
<author>
<name sortKey="Van Tendeloo, Gustaaf" uniqKey="Van Tendeloo G">Gustaaf van Tendeloo</name>
</author>
<author>
<name sortKey="Wu, Tom" uniqKey="Wu T">Tom Wu</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2012">2012</date>
<idno type="doi">10.1021/nl2035089</idno>
<idno type="RBID">pubmed:22142455</idno>
<idno type="pmid">22142455</idno>
<idno type="wicri:Area/Main/Corpus">001027</idno>
<idno type="wicri:Area/Main/Curation">001027</idno>
<idno type="wicri:Area/Main/Exploration">000B45</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallization (methods)</term>
<term>Electric Conductivity</term>
<term>Macromolecular Substances (chemistry)</term>
<term>Materials Testing</term>
<term>Molecular Conformation</term>
<term>Nanostructures (chemistry)</term>
<term>Nanostructures (ultrastructure)</term>
<term>Oxides (chemistry)</term>
<term>Particle Size</term>
<term>Phase Transition</term>
<term>Semiconductors</term>
<term>Surface Properties</term>
<term>Tin Compounds (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Macromolecular Substances</term>
<term>Oxides</term>
<term>Tin Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallization</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electric Conductivity</term>
<term>Materials Testing</term>
<term>Molecular Conformation</term>
<term>Particle Size</term>
<term>Phase Transition</term>
<term>Semiconductors</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rational synthesis of nanowires via the vapor-liquid-solid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored Au-Cu alloys as catalyst. Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary In-Sn-O phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22142455</PMID>
<DateCreated>
<Year>2012</Year>
<Month>01</Month>
<Day>11</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>27</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1530-6992</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Nano letters</Title>
<ISOAbbreviation>Nano Lett.</ISOAbbreviation>
</Journal>
<ArticleTitle>Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires.</ArticleTitle>
<Pagination>
<MedlinePgn>275-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/nl2035089</ELocationID>
<Abstract>
<AbstractText>Rational synthesis of nanowires via the vapor-liquid-solid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored Au-Cu alloys as catalyst. Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary In-Sn-O phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.</AbstractText>
<CopyrightInformation>© 2011 American Chemical Society</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<Affiliation>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Lebedev</LastName>
<ForeName>Oleg I</ForeName>
<Initials>OI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Turner</LastName>
<ForeName>Stuart</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yong Feng</ForeName>
<Initials>YF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Yun Hao</ForeName>
<Initials>YH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Yuan Ping</ForeName>
<Initials>YP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boullay</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prellier</LastName>
<ForeName>Wilfrid</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van Tendeloo</LastName>
<ForeName>Gustaaf</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Tom</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nano Lett</MedlineTA>
<NlmUniqueID>101088070</NlmUniqueID>
<ISSNLinking>1530-6984</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Tin Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>71243-84-0</RegistryNumber>
<NameOfSubstance>indium tin oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Crystallization</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electric Conductivity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Macromolecular Substances</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanostructures</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Oxides</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Phase Transition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Semiconductors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tin Compounds</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>12</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/nl2035089</ArticleId>
<ArticleId IdType="pubmed">22142455</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22142455
   |texte=   Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22142455" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024